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Abstract 
A rapidly changing Arctic has impacted biophysical and human systems while creating new economic opportunities. Spa-
tially identifying locations with development potential in this changing environment requires characterizing convergences 
in critical enabling/constraining factors occurring in a particular place. However, mapping techniques based on simple 
overlays of spatially heterogeneous data may result in visual clutter, compromising legibility, and increasing the likelihood 
of interpretation errors. To overcome these limitations, we introduce Pythia, a tool that combines geographic statistical 
analysis with a subtractive color model to enable bi- or tri-variate data analysis. Three case studies showcase this visualiza-
tion tool. Case study 1 identifes locations where temperature and population are projected to increase by 2040. Case study 
2 reveals locations with a signifcant presence of major roads and high NO2 concentrations but few hospitals and clinics. In 
case study 3, a combination of transportation infrastructure, protected areas, and travel and tourism infrastructure signals 
challenges for the future Alaskan tourism industry. Comparing these results allows for further geographic characterization 
of locations, aiding policymakers in identifying areas lacking resources and infrastructure, exploring possible futures, and 
supporting long-term strategic planning. 

Keywords Spatial statistics · Hotspot · Cluster · CYMK · Multivariate · Arctic 

Introduction 

Climate change signifcantly impacts biophysical and human 
systems, particularly in the Arctic. In the Bering Sea, for 
example, the frequency of marine heat waves has increased 
substantially during the last decade (2010–2019). This 
phenomenon has further decreased sea ice thickness and 
enhanced warming over Alaska, leading to snow melting 
and permafrost thawing (Carvalho et al. 2021). Consequently, 
permafrost thaw is damaging operational infrastructure 
(e.g., oil and gas pipelines), including roads and highways 
(Hjort et al. 2022), and exacerbating coastal erosion (Brady 
& Leichenko 2020). Some Indigenous Alaskan coastal vil-
lages are threatened by erosion and fooding, forcing some 
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populations to migrate (Bronen 2010). Rural-to-urban migra-
tion has been cited as a primary cause of long-term demo-
graphic decline in small Alaskan communities (Martin 2009). 

A warming Arctic also creates new economic opportuni-
ties for expanded natural resource extraction, particularly 
oil and natural gas, and increased shipping activities (Van-
derBerg 2018). The Arctic hosts large oil and natural gas 
deposits, and its exploration and production are expected to 
increase as sea ice declines, allowing additional investment 
in energy extraction activities (Nong et al. 2018). Despite 
its economic potential, natural resource extraction entails 
important environmental and health risks (McLoone et al. 
2021). NO2 (an indicator for the larger group of NOx) from 
oil production and gas faring can aggravate respiratory dis-
eases and increase susceptibility to respiratory infections 
(US EPA 2023). In Alaska, chronic obstructive pulmonary 
disease (COPD) is the fourth-highest cause of death and 
disability, with an increase in deaths per 100,000 of 12.3% 
from 2009 to 2019 (IHME 2020). 

Tourism has played an important role in the economy of 
Alaska (Zegre et  al. 2012) and has been proposed as a 
pathway for Indigenous sustainable development (Hillmer-
Pegram 2016). The State of Alaska 2022–2027 strategic 
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plan considers the growth and development of the state 
as a world-class visitor destination “similar to Iceland” 
(Alaska Department of Commerce 2022). The main attrac-
tions in polar destinations are landscapes, ice, and wildlife 
(Bystrowska & Dawson 2017). Thus, tourism peaks coincide 
with natural phenomena (e.g., wildlife migration; Grenier 
2007). However, eforts to open the Arctic National Wildlife 
Reserve for oil exploration and extraction (Sherval 2013) 
could damage natural landscapes and hinder the growth of 
the tourist industry. 

These three themes—climate change, natural resource 
extraction, and tourism—constitute a small subset of a mul-
titude of economic, political, and environmental pressures 
shaping Arctic development in complex, often competing 
ways. Accordingly, “development” itself is a contested con-
cept in the region, implicitly evoking a range of processes 
spanning from colonialist capital accumulation to preserving 
traditional Indigenous lifeways. As numerous scholars have 
noted (e.g., Bennett 2016; Veland & Lynch 2017; Graybill and 
Petrov 2020), the nature of the intersections of these pressures 
on development is explicitly spatial. Development always 
occurs (or fails to occur) somewhere, driven (or inhibited) 
by a confuence of enabling (or constraining) factors ranging 
from global to local that converge on a particular location. 
Identifying places with potential for a specifc mode of devel-
opment thus becomes, partially, an exercise in locating and 
characterizing convergences in pre-existing factors that tell a 
story of past and present development through a modal lens. 

Development centered on resource extraction in the Arc-
tic, for example, would depend on the presence of raw materi-
als (e.g., hard minerals, oil, and gas) and could be facilitated 
by infrastructure (e.g., pipelines), a robust transportation net-
work (e.g., seaports, railways, roads), and other amenities 
(e.g., healthcare facilities, schools/universities) to enable the 
import/export of inputs/outputs as well as to attract and retain 
a skilled workforce (Myllylä et al. 2016). Even so, such fac-
tors are only incomplete indicators of development potential. 
Resource extraction may justify the need for novel access-
ways where few roads exist, and a limited range of amenities 
in remote communities may underrepresent fuctuations in 
human presence by a transient workforce. 

A comprehensive examination of the development poten-
tial of a location typically involves feldwork-informed case 
study analysis (e.g., Pashkevich et al. 2016). However, an 
initial screening of sites based on a small number of criti-
cal enabling/constraining factors is possible through map-
ping and spatial analysis. Despite the recent proliferation 
of publicly available geospatial data, thematic mapping of 
development indicators as an analytical technique has tended 
to focus on a single variable or metric, whether relating to 
human presence directly (e.g., population change, as in Hele-
niak 2021) or to second-order efects of human activity (e.g., 
urban night lights, as in Morshed et al. 2022). 

This traditional approach to data visualization is sensible 
from the perspective of minimizing information that could 
potentially distract from the core message of the map. It is 
also insufcient for mapping complex concepts such as “vul-
nerability” or “development” that have multiple defnitions 
and may be represented through various indicators/prox-
ies, depending on context. The overlay or stack of multiple 
datasets on a single map may mitigate this limitation. This 
process, however, may also result in visual clutter, as the 
excess display of items can cause crowding, thus interfering 
with the  ability of the map user to gather visual information 
(Rosenholtz et al. 2007). Map legibility can also be compro-
mised, as symbols may overlap, resulting in the occlusion 
of relevant features (Touya et al. 2015). Choices in sym-
bolization (e.g., size, shape, and color) can also distort the 
perception of distributional patterns (e.g., apparent low/high 
concentration of attributes; Dent et al. 2009). 

Alternative mapping approaches and tools are thus 
needed to enable visualization and exploration of data in a 
systematic yet fexible way while minimizing arbitrary car-
tographic decisions and assigning exploratory and response 
variables a priori (e.g., Percival et al. 2022).1 Such mapping 
approaches should also facilitate the analysis of overlapping 
“lenses” of development at multiple scales within a consist-
ent visualization scheme to support the study of sustain-
able development. Datasets relevant to Arctic development, 
for instance, typically cover a wide range of thematic areas 
(e.g., climate change, demography, land use rights) and vary 
greatly in spatial scale, geometry, and format. 

For this reason, methods that aim to constrain analysis 
along networked spaces to avoid detection of spurious clus-
ters (e.g., Yamada and Thill 2010) are, therefore, inappro-
priate for analysis of these complex and variegated spatial 
phenomena. Furthermore, due to the sparse spatial distribu-
tion of infrastructure and amenities relevant to development 
in the Arctic, as well as the vast size of geographic admin-
istrative units in the region, mapping approaches  that high-
light where these overlapping factors are relatively highly 
concentrated are needed. These mapping approaches would 
allow users to focus attention on those locations where an 
intersection of complementary (or opposing) factors make 
development more (or less) likely (Eliasson et al. 2017). 

1 Existing spatial analysis approaches for exploring the overlap 
of thematic layers include techniques such as the reclassifcation 
of attributes to be used in weighted overlay analysis (Rahman et  al. 
2023). This technique, however, relies on the arbitrary selection of 
classifcation schemes, number of classes, and weighting of vari-
ables. Geographically Weighted Regression (GWR) and Multi-Scale 
Geographical GWR are other methods to explore multivariate interac-
tions, but these require a priori defnition of exploratory and response 
variables (Li 2022; Lotfata 2022). 
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This paper introduces a new multivariate visualiza-
tion tool for geospatial data named Pythia that combines 
a hotspot analysis with a subtractive color model. Like 
Pythia, the high priestess in the Temple of Apollo at Del-
phi, for which the tool is named, the tool ingests input 
datasets and returns an image that experts would then 
interpret. Hotspot analysis has been used previously for 
univariate visualization (e.g., measuring rural develop-
ment in Gupta et al. 2020; urban growth in Morshed et al. 
2022; spread of COVID in Bleha & Ďurček 2023) and 
bivariate visualization (network-constrained phenomena 
in Tinghua et al. 2017). It has not, however, been used 
previously with a tri-variate color blending model that 
allows users to combine multiple datasets to represent a 
single variable. 

The authors developed the tool to facilitate the iden-
tifcation, characterization, and visualization of current 
and potential places of human activity based on specifc 
variables selected for analysis to illustrate the use of the 
tool. These variables represent a particular lens, and their 
visualization allows for the creation of maps indicating 
development potential (or lack thereof). The maps from 
case studies presented in this paper are intended to be 
interpreted primarily by subject matter experts in Arc-
tic development, who may be best positioned to extract 
insights from an exploratory spatial data analysis while 
minimizing the risk of misinterpretation. Outputs from 
this tool may aid policymakers in identifying areas lack-
ing particular resources and infrastructure (e.g., health-
care facilities and programs) that could allow communities 
to increase their resilience to current and future climate 
change threats. 

Data and Methods 

The State of Alaska, the largest state by area in the US, was 
selected as the study area to showcase the Pythia multivari-
ate visualization tool. Publicly accessible geospatial data 
was acquired to explore three themes of development. The 
methodology combines geographic statistical analysis with 
a tri-variate cartographic technique to calculate an aggre-
gate data value within square grid cells and assign a color 
and saturation scheme for each selected variable. 

The pygeoda python library, based on GeoDa software, 
was used to run G* local spatial statistics to detect local 
clusters of high values, or hotspots, for each variable ana-
lyzed. A subtractive color blending technique was then 
used to visualize where hotspots overlapped. The combina-
tion of these techniques allows for the detection of poten-
tial areas for Arctic development and the investigation of 
nature-society relationships. 

Study Area 

Alaska (Fig. 1) has experienced negative net migration since 
2013, a decline in the working-age population since 2012, 
and a decrease in births since 2016 (Alaska Department of 
Labor 2023). According to the US Census Bureau (2022), 
the state has a population of about 733,000. Of the total 
population 25 years and older, 30.6% have a bachelor’s or 
higher degree, smaller than the nationwide (35.7%) and 
North Dakota (31.8%) averages but greater than the average 
educational attainment of Wyoming (29.6%) (US Census 
Bureau 2022). In 2021, the women-to-men’s earnings ratio 
was 79.1%, lower than the US (83.1%) and North Dakota 
(79.5%) averages but greater than the women-to-men’s ratio 
of Wyoming (75.2%) (US Bureau of Labor Statistics 2023). 

The US Bureau of Economic Analysis reports that the 
National Real Gross Domestic Product (GDP) increased by 
1.9% in 2022. The real GDP of Alaska and North Dakota, 
however, decreased by 1.4% and 1.1%, respectively, while 
the real GDP of Wyoming grew by 1%. In 2022, the mining, 
quarrying, and oil and gas extraction industries accounted 
for 17.7, 17.9, and 19.1% of the GDP of Alaska, North 
Dakota, and Wyoming, respectively. Although GDP from 
mining, quarrying, and oil and gas extraction increased by 
44.8% in the US and by 5% in Wyoming from 2021 to 2022, 
such industries declined in Alaska (− 12.8%) and North 
Dakota (−13.1%). (US Bureau of Economic Analysis 2023). 

Data Sources 

Open-source geospatial data was acquired to represent indi-
cators/proxies for a set of variables representing three case 
studies of development to be visualized in Pythia. The frst 
case study considers the changing population in Alaska in 
the context of climate change. The second case study show-
cases the identifcation of sites with a signifcant presence 
of major roads and high NO2 concentrations but few health 
facilities. The third case study explores possible locations 
for future tourism development. 

Case Study 1: Future Climate Change and Changing 
Populations 

The efects of a warming climate are particularly acute in the 
Arctic region. Rising temperatures have resulted in warmer 
oceans and amplifed ice loss with a deleterious impact on 
local communities, including increased food insecurity (Lor-
ing & Gerlach 2009; Reza & Sabau 2022). 

• Projected population: Data identifying locations with 
projected increasing populations by 2040 in a socioeco-
nomic scenario of high challenges for climate mitigation 
and adaptation (SSP3) were acquired from the NASA 
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   Fig. 1 The State of Alaska and its major populated locations. Data sources: Natural Earth (2022), Nelson (2010), and National Land Cover Data-
set 2016 (Dewitz 2019) 

Socioeconomic Data and Applications Center (sedac. 
ciesin.columbia.edu). The projection is relative to the 
base year 2000 and is available at one-eighth-degree 
spatial resolution (Jones and O’Neill 2020). 

• Climate change: The projected annual mean temperature 
anomaly for 2040 under the SSP3 scenario was selected 
as an indicator of climate change. Gridded values, cal-
culated relative to a 1995–2014 reference period, were 
acquired at 0.5° spatial resolution from the Climate 
Change Knowledge Portal (climateknowledgeportal. 
worldbank.org) developed by the World Bank (2021). 

Case Study 2: Environmental Health 

The accumulation of chemical stressors in the environment 
can afect communities that may be already overburdened by 
socioeconomic inequalities and a lack of resources, includ-
ing access to healthcare. The identifcation of hotspots of 
NO2 concentrations from activity such as road trafc, along 
with access to healthcare facilities to treat conditions such as 
asthma that may be exacerbated by air pollution, is therefore 
paramount for addressing health disparities, which are also 
projected to be exacerbated by climate change. 

• Major roads: Locations of major roads were obtained 
from Natural Earth (2022) from the website naturalearth-
data.com. 

• Nitrogen dioxide (NO2): Gridded annual mean NO2 con-
centrations from Copernicus Sentinel-5P (2018) from 
January 01, 2021, to December 31, 2021, with 1-km spa-
tial resolution, were acquired via Google Earth Engine. 

• Hospitals and clinics: Locations of hospitals and clin-
ics were obtained from OpenStreetMap (OSM) via the 
Geofabrik Download Portal (download.geofabrik.de). 
Hospitals and clinics were defned as features classifed 
as “hospital” or “clinic” (OpenStreetMap & Geofabrik 
2023). 

Case Study 3: Tourism Potential 

According to the Resource Development Council for Alaska 
(2023), in 2018, tourism in the state generated more than 
$126 million in state revenues and $88 million in municipal 
revenues. The same source reports that most visitors arrive 
by cruise ship (58%) and the rest by highway/ferry or air to 
spend money on tours, public land permits, campgrounds, 
and hotels. 

https://download.geofabrik.de
https://data.com
https://worldbank.org
https://ciesin.columbia.edu
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• Transportation infrastructure: Major seaport, airport, 
road, and railroad locations were obtained from Natu-
ral Earth (2022) at naturalearthdata.com. Railroad data 
were last updated in 2017; all other datasets were updated 
in 2022. The airport dataset was combined with data 
acquired from the State of Alaska Geoportal (gis.data. 
alaska.gov) to include 237 facilities owned and operated 
by the State of Alaska Department of Transportation and 
Public Facilities (Alaska DOT&PF 2024). 

• Hospitality and attractions: Hospitality facilities and 
tourist attractions were obtained from OpenStreetMap 
via the Geofabrik Download Portal (download.geofab-
rik.de). Hospitality facilities were defned as features 
classifed as “guesthouse,” “hostel,” “hotel,” or “motel.” 
Tourist attractions were defned as features classifed 
as “attraction,” “campsite,” “museum,” “travel agent,” 
or “tourist information.” (OpenStreetMap & Geofabrik 
2023). 

• Protected areas: Terrestrial, coastal, and marine protected 
areas datasets were obtained from the World Database on 
Protected Areas (WDPA) portal (protectedplanet.net) for 
June 2022. The dataset is collected and made available 
by the UN Environment Program and the International 
Union for Conservation of Nature (IUCN & UNEP-
WCMC 2022). 

Data Analysis 

Arctic development potential can be characterized partially 
by the presence (or absence) of enabling (or constraining) 
variables. Pythia allows one or more datasets to represent 
one variable characterizing an enabling/constraining factor 
for a specifc path of development. Each variable, in turn, is 
represented by a circle in a Venn diagram with overlapping 
colors representing areas where two or more variables with 
statistically signifcant local clusters of high values over-
lap (hotspots). Optionally, these colors can be displayed 
with varying shades of saturation, representing the degree 
to which multiple datasets representing a single variable 
achieve statistical signifcance. 

The identifcation and characterization of spatial hotspots 
for each variable requires a three-step process (Fig. 2): (a) 
the aggregation or synthesis of geographic data by a unit of 
analysis (e.g., cell), (b) the detection of local clusters, and 
(c) the visualization of detected clusters. 

Data Aggregation 

Geospatial data representing Arctic development factors 
come from multiple, unrelated sources and generally lack 
a standard format. A data aggregation method that could 
accommodate a variety of formats (vector vs. raster) and 

Fig. 2 An overview of the methodology to identify and characterize locations for a specifc type of development using the Pythia multivariate 
visualization tool 

https://protectedplanet.net
https://alaska.gov
https://naturalearthdata.com
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geometries (point, line, polygon) and enable hotspot analysis 
on a standard geographic unit of measurement is, therefore, 
required. To this end, a “fshnet” grid, with rectangular cells 
of 20 × 20 km, was created to cover the extent of the study 
area. The cell size selection for this analysis was a compro-
mise between resolution and over-aggregation time. While 
20-km resolution limits the utility of the tool at local scales, 
it is sufcient to enable the exploration of broad-state and 
region-scale spatial patterns. 

The grid was frst generated at a spatial extent exceed-
ing that of the study area to avoid the loss of data at the 
boundaries. Grid cells that at least partially intersected with 
the study area were selected via the spatial selection tool 
in ArcGIS Pro© (version 3.0.3). The selected cells were 
then retained as the complete fshnet grid for use in hotspot 
analysis. A manual inspection was performed to confrm that 
no portion of the study area was omitted. Geographic data 
were aggregated by cell according to the type (point, line, 
polygon, raster), as follows: 

• Point data (e.g., seaports; hospitals): Features were 
aggregated with the use of the spatial join tool available 
in ArcGIS. Each cell was assigned a count value corre-
sponding to the number of points falling inside it. Cells 
with no point features were assigned values of 0 for that 
variable. 

• Line and polygon data (e.g., roads; marine protected 
areas): Features were split by portions overlapping the 
fshnet cells using an intersect tool in ArcGIS. The total 
length (for line data) or area (for polygon data) of the fea-
tures intersecting each cell was computed and assigned 
as the  value of the cell. Cells with no overlapping line 
segments or polygon fragments were assigned values of 
0 for that variable. 

• Raster data (e.g., temperature; nitrogen dioxide): A 
zonal statistics tool was used to summarize (e.g., mean, 
median, sum) the values of raster cells whose centroids 
fall in each fshnet grid cell. Summary statistics were 
then assigned to each fshnet cell using a table join. 
Where input raster data contained cells with “no data,” 
no data value was assigned to the overlapping fshnet grid 
cells, and these areas were masked from hotspot analysis. 

Detection of Local Clusters 

The identifcation of hotspots or clusters was performed via 
the estimation of the G* statistic. Other statistics allow for 
the detection of high values within the data. The G* statistic, 
however, allows for the detection of statistically signifcant 
clusters only if a feature has other surrounding high values 
of a feature. A Kernel Density Estimation, for example, does 
not calculate the p-value. It is then unclear if the detected 
clusters are statistically signifcant or not (Kalinic & Krisp 

2018). We, therefore, incorporate the G* statistic into the 
Pythia tool. 

Local clusters were detected using pygeoda, a Python 
library for spatial analysis based on GeoDa software. The 
tool allows for the application of local spatial autocor-
relation statistics, specifically G or G*, to identify sta-
tistically significant clustering of cases or “hotspots” 
based on calculated distances between each feature and 
the location of its nearest neighbor (Ord & Getis 1995). 
These distances are stored on a matrix and serve as spa-
tial weights, integrating spatial relationships among cells 
in the dataset. These spatial relationships can be based 
on Rook contiguity, where only common sides of cells 
are considered to define neighboring relationships, or 
on Queen contiguity, where common vertices are addi-
tionally considered to define neighboring relationships 
(Anselin & Rey 2014). 

The Pythia tool allows for the specifcation of polygon 
contiguity and order, where frst-order contiguity analyzes 
the immediate neighbors, and second-order contiguity con-
siders spatial relationships beyond immediate neighbors 
(e.g., neighbors of neighbors). For this exploratory analy-
sis, a frst-order Queen contiguity was selected. Based on 
the generated spatial weights, a local spatial autocorrela-
tion statistic G is calculated for each column or dataset 
(i). The statistic measures the degree of association that 
results from the concentration of features, in this case, 
aggregated in an area and all other areas within a radius 
distance (neighborhood). The G statistic is then standard-
ized, producing a ZG score, with the formula defned as 
(Getis & Ord 1992) 

(G − E[G]) 
zG = √ (1)

(V[G]) 

where G is the calculated G statistic describing the spa-
tial dependency or autocorrelation of a feature, E is the 
expectation of G, and V is the variance of G. The ZG score 
is evaluated under the null hypothesis (H0) of complete 
spatial randomness (CSR) and the alternative hypothesis 
(HA) of spatial dependency. Under CSR, the expected 
number of observations within any cell would be the 
same. 

A p-value is also calculated and used to assess 
statistical significance at a 95% confidence level 
(p-value < 0.05). The 95% confidence level is a some-
what arbitrary standard for statistical significance; in this 
case, a p-value less than 0.05 indicates that the observed 
spatial pattern is unlikely to have occurred by random 
chance 95% of the time. While stricter standards (e.g., 
p-value < 0.01) may be applied to further narrow the set 
of locations identified as local clusters of geographic 
features (hotspots), we adopt the 95% standard owing to 
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its widespread use in statistical analysis and its general 
acceptance as a reasonable cut-off for statistical sig-
nificance (Andrade 2019). Reducing the probability of 
Type I errors (rejecting the H0 when it is true) commonly 
involves setting a lower significance level (e.g., 0.01). 
This significance level may, however, increase the risk of 
Type II errors (failing to reject H0 when it is false). The 
opposite outcome may occur with a higher significance 
level (e.g., 0.1). Thus, a significance level of 0.05 may 
also balance both. 

High positive z-values may indicate possible local clus-
ters of high values (hotspots) of the variable being analyzed, 
whereas low negative z-values may indicate potential clus-
ters of low values (cold spots). The resulting clusters are 
identifed by an integer (Fig. 3), where 0 indicates non-sig-
nifcant clusters (− 1.96 < ZG < 1.96), 1 indicates signifcant 
hotspots (cluster of high values or ZG >1.96), and 2 indicates 
signifcant cold spots (cluster of low values or ZG < − 1.96). 
Statistically signifcant (p-value < 0.05) high-value clusters 
are extracted using a binary reclassifcation. A value of 0 is 
assigned to statistically signifcant low values (cold spots) 
to remove them, along with non-signifcant clusters from 
further analysis. 

This G calculation and binary reclassifcation is per-
formed for each aggregated column or dataset (i) within 
the fshnet. These binary-recoded values are then concate-
nated into a single column, resulting in a string comprised 
of 0 s and 1 s. The number of characters thus depended 
on the number of datasets analyzed. For the analysis of 
three datasets, one representing a constraining or ena-
bling variable, a cell with no signifcant detected hotspots 

would have a concatenated value of “0,0,0.” A cell with 
a string of “1,0,0” indicates signifcant hotspots detected 
for the frst dataset, whereas “1,0,1” indicates signifcant 
hotspots were found for the frst and third datasets, and 
“1,1,1” indicates signifcant hotspots were found for all 
three datasets. 

Visualization of Detected Clusters 

A multivariate CYMK color method is employed to visual-
ize multivariate cluster detection. This process, therefore, 
translates qualitative and quantitative diferences between 
datasets into distinct visual efects. Variations among data-
sets are represented by a changing hue and in the level of 
signifcance by saturation. This approach allows map users 
to easily distinguish among two or three datasets visualized 
simultaneously while also enabling visualization of varying 
levels of statistical signifcance in clusters aggregated from 
individual datasets. 

The US Census Bureau used a color composite approach 
in the 1970s to analyze bivariate correlation in choropleth 
maps (Olson 1981; Strode et al. 2020). Variables visual-
ized with such a method can be continuous (interval/ratio) 
or categorical (ordinal/binary; Carstensen 1984). The crea-
tion of tri-variate maps was discussed in the 1980s, which 
addressed the possibility of combining saturation and bright-
ness using the Ostwald Triangle (Trumbo 1981). Color 
blending methods (e.g., RGB or CMYK) are now often used 
in spectral image analysis and geochemical mapping, high-
lighting the spatial relationship between variables (Agyeman 
et al. 2023). 

Fig. 3 Snapshot of the attribute table of a fshnet computed by Pythia (CONCAT) of binary results. *0: non-signifcant clusters; 1: statisti-
for three datasets analyzed, each representing one variable. The table cally signifcant hotspots (cluster of high values); 2: statistically sig-
contains the unique ID of the cell (GEOID), aggregated data (i), clus- nifcant cold spots (cluster of low values) 
ter results* (l1–l3), binary reclassifcation (s1–s3), and concatenation 
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Fig. 4 Examples of CYMK 
color schemes represented in a 
cube or equilateral triangle 

In a cyan, magenta, yellow, and black (CMYK) color 
scheme, each color represents an individual variable and, 
when combined, results in an array of colors (Albanese 
et al. 2011). The generated colors (Fig. 4) can be presented 
as a cube, where the origin vertex has a black color (K), 
with increasing saturation and changing hue along the axes 
(Albanese et al. 2011; Guagliardi et al., 2020). CYMK-
generated colors can also be presented as an equilateral 
triangle, with each vertex representing a primary color and 
the center gradually turning black (K), indicating a full 
combination of colors (Kebonye et al. 2023). 

The Pythia tool uses cyan, magenta, and yellow as the 
primary colors, each defning one variable for which sta-
tistically signifcant hotspots were detected. The variables 
are represented in a Venn diagram (Fig. 5), with each circle 
shaded with a primary CMY color. An RGB color scheme 
results if a hotspot is detected for two of the analyzed vari-
ables. A hotspot detected in all three variables results in the 
full combination of colors (K). 

Fig. 5 CYMK color scheme used by Pythia to visualize places where 
hotspots overlap 

Using More than One Dataset per Variable 

Optionally, the Pythia tool allows for the incorporation of more 
than one dataset (i) per analyzed variable (x) and for hotspot 
analysis to be performed on each dataset individually, with the 
combined result representing the presence of a signifcant hot-
spot of both, either, or neither dataset. For such analyses, the G 
calculation and binary reclassifcation are performed for each 
column or dataset (i) within the fshnet, as described above (see 
“Detection of Local Clusters”). For two datasets (i) represent-
ing a single variable (x), results of the binary reclassifcation 
are added together before proceeding with the concatenation 
(Fig. 6), resulting in values ranging from 0 (no hotspots detected 
in either dataset) to 2 (hotspots detected in both datasets). 

The resulting values are then concatenated. As before, the 
number of characters in the concatenated series depends on 
the number of variables (x) analyzed, but each character now 
represents the sum of the recoded results. For three variables 
and two datasets representing each, a cell with no signifcant 
detected hotspots in any dataset still results in a concatenated 
value of “0,0,0.” A cell with a string of “1,0,0” indicates signif-
icant hotspots detected on one dataset of one variable only. A 
series of “2,0,1” shows signifcant hotspots detected for the two 
analyzed datasets in the frst variable and only in one dataset 
of the third variable. A string of “2,2,2” indicates signifcant 
hotspots detected for both datasets in all three variables. 

Each circle or primary color in the Venn diagram still rep-
resents a variable for which statistically signifcant hotspots 
are detected. The level of saturation of each color, however, 
depends on the number of datasets found to be signifcant 
(the addition of the binary-recoded results). For example, a 
cell with a string of “1,0,0” may be visualized in magenta 
with only 50% saturation (Fig. 7) because signifcance was 
found for only one of the two datasets. In contrast, a string 
of “2,0,0” presents as magenta with 100% saturation. A cell 
with a series of “2,0,1” or “1,0,2” may be visualized as blue 
with 75% saturation, given that signifcance was found in 
three of the four datasets, while a string of “1,0,1” results in 
blue with 50% saturation. A string of “2,2,2” indicates full 
saturation of all three colors, visualized as black. 
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Fig. 6 Snapshot of attribute table of a fshnet computed by Pythia for cell, cluster results (l1–l6), binary reclassifcation (s1–s6), the addi-
the analysis of three variables, each with two datasets. The resulting tion of binary recoded by variable (s1 +s2, s3+s4, and s5+s6), and 
table contains the unique ID of the cell (GEOID), aggregated data by concatenation results (CONCAT) 

Fig. 7 The CYMK color and saturation scheme used by Pythia to visualize places where variables overlapped, considering two datasets to ana-
lyze each variable 

Results 

Here, we describe the results of Pythia as a supporting tool 
facilitating analysis of the three case studies: (1) future cli-
mate change and changing populations, (2) environmental 
health, and (3) tourism potential in Alaska. In each case, 
Pythia revealed statistically signifcant clusters or hotspots 
of key features and facilitated visual interpretation of con-
vergent factors of development. 

Case Study 1: Future Climate Change and Changing 
Populations 

Mapping projected changes in population and increasing 
temperature data with traditional overlays illustrates the 
challenge of interpreting a coherent narrative from multiple 
overlapping raster datasets. The spatial distribution of areas 
with projected increasing populations by 2040 (Fig. 8) is 
shown with the use of a geometric interval scheme, given 

that the distribution of the data is heavily skewed to the 
right by a predominance of pixel values equal to 0. Areas 
with projected increases appeared primarily concentrated 
in Fairbanks, Anchorage, and to the east around Bethel and 
Nome. 

Projected mean temperature anomalies appear to be more 
severe in the North Slope region compared to the rest of the 
state. The temperature values, however, are visualized with 
an equal interval classifcation scheme, resulting in some 
classes with more pixels than others. A diferent classifca-
tion method (e.g., standard deviation) with a diferent num-
ber of classes would produce a diferent pattern, potentially 
obscuring hotspots of high-mean temperature anomalies 
or misidentifying some areas as hotspots. This traditional 
visualization method also raises potential questions about 
the meaning of “signifcant” increases in population and 
temperature anomalies, which could be left to the personal 
interpretation of the map user. An overlay of both datasets 
also complicates the detection of hotspots. 
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   Fig. 8 Spatial distribution of projected increasing populations and annual mean temperature anomaly by 2040 under an SSP3 scenario. Data 
source: NASA Socioeconomic Data and Applications Center (Jones and O’Neill 2020) and World Bank (2021) 

Visualization of these data with Pythia simplifes the 
interpretation of these phenomena. Pythia aggregates data 
into uniform polygonal units of analysis (cells), highlighting 
areas of projected increasing population. In addition, because 
the tool detects statistically signifcant hotspots based on 
neighboring values and distance between cells, statistical 
relationships determine the “threshold” for a high-value 
location, reducing potential human errors of interpretation. 

Figure 9 clearly depicts locations with statistically sig-
nifcant high values of projected increasing mean tempera-
ture anomalies in northern Alaska (magenta). Areas with 
projected increasing population by 2040 were found along 
the eastern coast, in Fairbanks and southern Alaska (cyan). 
Places identifed as projected to experience both increased 
temperature anomalies and increasing populations by 2040 
were found only in Nome (blue). 

Case Study 2: Environmental Health 

The spatial distribution of major roads (Fig. 10) shows a high 
density in Fairbanks and southern Alaska, near Anchorage and 
Prudhoe Bay. Hospitals and clinics extracted from OSM are 
mainly concentrated in Anchorage and south towards Kenai. 
The apparent high concentration of point symbology in these 
areas can produce spatial bias. The resulting spatial pattern 

could lead a map user to focus an inordinate amount of atten-
tion on these areas of apparent high concentration of features. 

Concentrations of NO2 appeared higher in the North Slope 
and near Denali. The apparent location of places with the high-
est NO2 concentrations, however, depends on the classifcation 
method used to distinguish the raster values (e.g., quantile, 
standard deviation) and the number of classes. The detection of 
clusters sensitive to the distribution of spatially heterogenous 
datasets thus requires a standard spatial unit (e.g., cell) and a 
spatial statistical test, which have been integrated into Pythia. 

Using Pythia, hotspots of hospitals and clinics (magenta) 
were observed on the western coast, in the Kenai Penin-
sula towards Valdez and Cordova, and on the southeastern 
coast in Sitka. Additional hospital and clinic hotspots were 
detected near Utqiagvik, Kotzebue, and Koyukuk, each of 
which appeared as single facilities using simple overlays 
(Fig. 10). Concentrations of major roads (cyan) were mainly 
observed from Prudhoe Bay towards Fairbanks, near Nome, 
in southern Alaska near Valdez, and along the southeastern 
coast. Statistically signifcant locations of high NO2 con-
centrations (yellow) were found in northern Alaska, in the 
interior surrounding Denali towards the Kenai Peninsula, 
along the Aleutian Islands, and on the southeastern coast. 

Detection of statistically signifcant hotspots with Pythia 
allows for the identifcation of overlapping hotspots that 
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Fig. 9 Locations identifed in Pythia as experiencing statistically signifcant a increased mean temperature anomalies (magenta), b increasing 
population (cyan), and c both (blue) by 2040 for an SSP3 scenario 

otherwise may have gone undetected (Fig. 11). In this case, symbology. Likewise, the identifcation of statistically high 
the high incidence of hospitals and clinics on the south- NO2 concentrations in the North Slope no longer depends 
east coast may have been obscured by the overlapping point on cartographic choices such as the classifcation method or 

Fig. 10 Spatial distribution of hospitals and clinics, major roads, and median nitrogen dioxide concentrations for January to December 2021 in 
Alaska. Data source: OpenStreetMap & Geofabrik (2023); Natural Earth (2022); Copernicus Sentinel-5P (2018) 
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   Fig. 11 Locations identifed in Pythia as hotspots of a hospitals and clinics (magenta), b major roads (cyan), c mean concentration of nitrogen 
dioxide (yellow), and d overlapping combinations of the three variables 

the number of classes. In the Anchorage area, the separation 
between overlapping clusters of high NO2 values and hospi-
tals and clinics (red) and overlapping clusters of high NO2 
values and major roads (green) is clearly visible, whereas 
these features may appear to fully intersect when visualized 
with simple overlays (Fig. 10). The overlap of major roads, 
hospitals, and clinics occurs in Tanacross, which stands out 
conspicuously as the only location visualized in blue. 

Case Study 3: Tourism 

Initial visualization of spatial data to analyze the tourism 
industry in Alaska resulted in considerable symbology over-
lap (Fig. 12). Major seaports are shown in Nome, Kodiak, 
and to the southeast from Skagway to Ketchikan. Major 
airports are located to the north in Utqiagvik and Prudhoe 
Bay, to the east in Nome and Bethel, in the interior near 
Fairbanks, and to the south near Kodiak. No specifc spatial 
pattern, however, is observed when all public DOT&PF-
controlled airports (n = 237) are displayed. 

Major transportation lines (railroads and roads) run 
north–south from Prudhoe Bay to Anchorage, with hospi-
tality facilities (e.g., hotels, motels, and guesthouses) located 
along the same route. A similar pattern appeared for tourist 
attractions (e.g., campsites, museums, travel agents, tourist 
information) but with other scattered locations throughout 

the state. Terrestrial protected areas appeared throughout 
Alaska, while coastal and marine protected areas are shown 
west in Bethel and southeast in Glacier Bay. 

While these patterns are worthy of investigation, their 
presentation as simple overlays compromises the identi-
fcation of hotspots of each variable. This phenomenon is 
particularly apparent where point datasets of hospitality 
facilities and tourist attractions are stacked over each other. 
These features, as well as railroads and roads represented 
as lines, cannot overlap in reality, as depicted on the map, 
because they cannot occupy the same physical space. Detec-
tion of hotspots of protected areas is also challenging due 
to the fragmentation of multiple polygon features of vary-
ing shapes and sizes that comprise these datasets. Hotspot 
detection, therefore, requires the construction of a uniform 
“neighborhood” unit of analysis, allowing for spatial aggre-
gation and summarization of multiple features with diferent 
spatial dimensions. 

The results from Pythia (Fig. 13) show a significant 
hotspot (high saturation) of terrestrial, coastal, and marine 
protected areas around the Bethel region and southeast in 
Glacier Bay (yellow). Most travel and tourism infrastructure 
hotspots (cyan) were found along the corridor from Anchor-
age, Valdez, and Cordova, with other hotspots detected to 
the North in Utqiagvik and along the southeastern part of 
Alaska. Transportation clusters (magenta) were found to the 
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Fig. 12 Spatial distribution of major transportation infrastructure and marine protected areas. Data source: Alaska DOT&PF (2024);
(airports, seaports, railroads, and roads) relevant for the tourism Natural Earth (2022); OpenStreetMap & Geofabrik (2023); IUCN &
industry, hospitality and tourist attractions, and terrestrial, coastal, UNEP-WCMC (2022) 

Fig. 13 Locations identifed in Pythia as hotspots of a terrestrial, coastal, and marine protected areas (yellow); b transportation infrastructure 
(magenta); c travel and tourism infrastructure (cyan); and d overlapping combinations of the three variables 
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west in Nome, from Fairbanks north towards Prudhoe Bay, 
and along the eastern coast. 

While Fig. 12 may appear to show a potential travel and 
infrastructure cluster near Kobuk Valley National Park, 
results from Pythia reveal that this potential hotspot is not 
statistically signifcant due to the consideration of distance 
between these features in the calculation of the G* statis-
tic. Pythia also allows the removal of statistically non-sig-
nifcant clusters, further aiding map interpretation. Such 
apparent clusters of terrestrial protected areas were removed 
along the Brooks Range and Cape Krusenstern National 
Monument. Several non-signifcant clusters of transporta-
tion infrastructure (e.g., Utqiagvik) were also removed. 

As shown in this example, the aggregation of data into 
uniform spatial units and the removal of not statistically 
significant hotspots reduces visual clutter, aiding the 
identification of locations with tourism potential. Over-
lapping hotspots of transportation infrastructure and pro-
tected areas (red) were detected in Bethel and Cordova. 
Overlapping hotspots of protected areas and travel and 
tourism infrastructure (green) were detected in Cold Bay. 
Overlap of hotspots of transportation and travel and tour-
ism infrastructure (blue) was primarily located in Fair-
banks, Wasilla, and Palmer. Additional locations were 
found to the southeast in Skagway, Juneau, and Ketchi-
kan. All variables overlapped (black) only in the Kenai 
Peninsula but with less than 100% color saturation. 

Testing Sensitivity to Cell Size 

Cell size determines the scale at which data are aggregated. 
The choice of cell size, therefore, can signifcantly afect 
the results of spatial clustering (Vieux & Needham 1993; 
Hengl 2006). A sensitivity analysis was performed to test the 
efect of cell size on results from Pythia. Data inputs from 
case study 2 (hospitals and clinics; major roads; NO2 con-
centrations) were aggregated into 10-km, 30-km, and 40-km 
cells, representing a decrease and increase, respectively, in 
cell size over the baseline case (20-km). Case study 2 was 
selected because its three inputs represent three diferent 
types of spatial data (point, line, and raster), each of which 
might be afected by a change in cell size in a diferent way. 

Results of the sensitivity analysis (Fig. 14) show similar 
spatial patterns among the clusters represented with fner to 
coarser (10-km, 30-km, 40-km) cell sizes compared to the 
20-km baseline map (Fig. 14b). In general, clusters of the 
individual datasets (and their areas of overlap) that appear 
in the 20-km map are also present in the 10-km, 30-km, 
and 40-km maps but with varying levels of visibility. Indi-
vidual clusters become easier to see as cell size increases. 
Thus, clusters may appear “larger” on the 40-km map than 
on the 10-km map, even when the total number of clusters is 
approximately equal. Conversely, a smaller cell size enables 

clusters to be depicted with greater spatial precision but may 
appear “smaller” than on the 40-km map. 

An important exception to the overall similarity among 
these maps is that road clusters in the coarser grid are lim-
ited to urban areas and do not depict inter-urban connec-
tions, such as the highway from Fairbanks to Prudhoe Bay. 
This fnding suggests that relatively small concentrations of 
spatial features are less likely to be classifed as clusters as 
the level of data aggregation increases. In contrast, the fner 
grid represents clusters of inter-urban road connections with 
a higher level of detail than the baseline grid. A possible 
downside of this enhanced detail is that clusters of features, 
which may have high concentrations in fewer locations, may 
appear less prominent than other features with a more wide-
spread distribution (e.g., road infrastructure). 

Overall, results from this sensitivity analysis suggest that 
broad spatial patterns of statistically signifcant clusters 
may be detected using a range of cell sizes. Each cell size, 
however, has trade-ofs relative to the others. In general, a 
coarser grid will enhance the visibility of clusters but may 
fail to detect hotspots of a relatively low concentration of 
features. In contrast, a fner grid is more likely to depict low-
concentration spatial features as clusters but may appear to 
over-represent features with a broad geographic distribution 
relative to more localized features. These trade-ofs should 
be carefully considered when selecting a cell size for a par-
ticular analytical context. 

Testing User Interpretation 

The interpretation of maps created with Pythia depends on 
whether the user can associate the combinations of the three 
subtractive colors (CYM) with combinations of development 
factors or variables. We, therefore, tested the reasonableness 
of this assumed association with a simple cognition experi-
ment. Twenty graduate students were shown the three case 
study maps (Figs. 9, 11, and 13) with the legends removed. 
They were then asked to infer what each color on each map 
represented. The aim was to determine whether combina-
tions of colors could convey the concept of spatial intersec-
tion of multiple datasets even without the beneft of a legend 
making this explicit. 

Results showed strong indications of an intuitive associa-
tion between colors and variables. Most respondents correctly 
inferred that red, green, blue, and black represented combina-
tions of cyan, yellow, and magenta (Fig. 9: 72%; Fig. 11: 70%; 
Fig. 13: 75%). For Figs. 11 and 13, half of the respondents 
could associate each color with the correct combination of 
datasets. For Fig. 13, 65% of respondents intuited that darker 
shades indicated higher values of the respective datasets being 
intersected. When shown the fgure with the legend and cap-
tion, 85% of respondents correctly identifed that the level of 
shading corresponded to the level of statistical signifcance of 
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Fig. 14 Locations identifed in Pythia as hotspots of hospitals and clinics (magenta), major roads (cyan), mean concentration of nitrogen dioxide 
(yellow), and overlapping combinations of the three variables, using a cell size of a 10×10 km, b 20×20 km, c 30×30 km, and d 40×40 km 

the underlying data, even though they had not been previously 
informed that colored areas represented statistically signif-
cant hotspots. These results support the notion of an implicit 
association between CYMK colors and the spatial datasets 
they represent, lending confdence to the interpretability of 
maps created using this method. Therefore, we would expect 
an even larger number of respondents to correctly associate 
colors and variables if a legend had been shown. 

Discussion and Conclusion 

The initial identifcation of locations in the Arctic with char-
acteristics that would enable/constrain a specifc mode of 
development is possible through mapping and spatial analy-
sis. However, mapping techniques based on simple overlays 
of spatially heterogeneous data may result in visual clutter, 
compromising the legibility of the map and increasing the 
likelihood of interpretation errors. The overrepresentation 
of particular features, like airports, may overwhelm the 
map and obscure other key features, which may exhibit 

statistically signifcant clustering but risk being overlooked 
due to having fewer features overall. Analyzing multiple 
raster datasets in a single map may also result in map illeg-
ibility, as cells of overlapping raster datasets may not be 
easily distinguished. 

The Pythia tool was developed to address these chal-
lenges and allow for the overlay of multiple datasets to visu-
alize and explore the spatial distribution of features relevant 
to a particular mode or lens of Arctic development. The tool 
facilitates the identifcation, characterization, and visualiza-
tion of current and potential places of human activity within 
the Arctic based on specifc variables selected for analysis. 
Based on spatial relationships, the tool uses the G or G* 
statistic to identify signifcant locations or hotspots where 
particular features occur. 

The G statistic and its corresponding z- and p-values 
are calculated for each dataset. Statistically significant 
(p-value < 0.05) high clusters are then extracted for each 
dataset, assigned a value of 1, and concatenated to a series. 
A CYMK is assigned to each variable, and consequently, an 
RGB color scheme results if a hotspot is detected for two of 
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the analyzed variables. A hotspot detected in all three data-
sets results in the full combination of colors (black). If more 
than one dataset is used per analyzed variable, the saturation 
of the colors will depend on the combined signifcance of 
the input datasets. 

Three case studies were conducted to showcase this mul-
tivariate visualization tool. Case study 1 identifes Nome as 
a location projected to experience an amplifed temperature 
anomaly and increased population by 2040 under an SSP3 
climate change scenario. Case study 2 revealed statistically 
signifcant locations with major roads and high NO2 con-
centrations but no hospitals and clinics in Prudhoe Bay, Big 
Delta, Gulkana, and near Anchorage. In case study 3, an 
overlap of transportation infrastructure and protected areas 
was detected in Bethel and Cordova, but with no signifcant 
travel and tourism infrastructure, which could signal chal-
lenges for the tourism industry. 

Comparing the results of these case studies allows for 
further characterization of locations. The results indicate 
positive and negative lenses of development, such as the 
capacity to absorb increased tourism activities vs. envi-
ronmental health consequences that may result from such 
activities. These results, however, are also complementary, 
highlighting combinations of critical enabling/constraining 
factors occurring in a specifc location. Case study 1 shows 
projected increased mean temperature anomaly in Utqiagvik, 
while case studies 2 and 3 show this location as a hotspot for 
travel and tourism, as well as health infrastructure. Increas-
ing temperatures, however, will reduce sea ice, consequently 
impacting coastlines (e.g., fooding and erosion) and local 
populations (e.g., displacement and drinking water contami-
nation), which may constrain development. 

In Prudhoe Bay, increased temperatures could result in 
reduced sea ice, permafrost thawing, and coastal erosion, 
furthering the potential for increased pollution due to oil 
spills. In Nome, the projected increase in temperatures may 
exacerbate already occurring coastal erosion, placing exist-
ing infrastructure at risk of severe damage. A hotspot of 
transportation and protected areas was found in Bethel, but 
no statistically signifcant travel and tourism infrastructure 
was located. While the lack of tourism infrastructure could 
be a possible constraining factor for the growth of tourism 
in the southwest, the region, particularly Cold Bay, did not 
show a projected increase in population (case 1) and was 
identifed as a hotspot in case 2, illustrating some potential 
for growth in other sectors. 

The fexibility to choose a cell size also enables users to 
defne the scale of analysis from global to local. Because 
datasets are aggregated into a cell, results also depend on 
the dimension of the cell; larger cells will increase the level 
of aggregation of the features analyzed. The dimension of 
the cell, however, would also be dependent on the scale of 
analysis and the size of the study area. An optimal resolution 

would maximize cluster visibility and allow for efcient user 
interpretation without overaggregating the datasets since the 
purpose is to locate extremes or hotspots (Hengl 2006). 

Each combination of variables represented a particular 
lens to showcase this visualization tool. Results will, there-
fore, depend on variables the user selects and the quality 
of the acquired datasets. Because Pythia assumes that input 
datasets accurately refect “ground truth,” using incomplete 
(or incorrect) input data may result in maps that miss “true” 
hotspots in some areas while detecting “false” hotspots in 
other areas. As a result, users are advised to exercise caution 
when combining data obtained from multiple sources across 
study areas, as data availability and quality standards vary 
signifcantly across the Arctic region (Schwoerer et al. 2021). 

Pythia should only be used as an initial screening of 
sites based on a small number (1–3) of variables and data-
sets (1–6) of critical enabling/constraining factors. While 
this tool may aid policymakers in identifying areas lack-
ing particular resources and infrastructure (e.g., travel and 
tourism infrastructure), it does not replace a comprehen-
sive examination of the development potential of a location 
through feldwork or deeper analysis beyond an exploratory 
phase. 

The tool can also be used to explore possible futures 
with the use of projected data, which could lead to policy 
changes and strategic planning in Arctic contexts. Scenarios 
are often used as a tool in long-range planning and policy 
analysis (e.g., Lempert et al. 2003; Moniz 2006) and have 
frequently been utilized to understand potential trajectories 
of climate change and impacts of alternative policies on 
mitigation and adaptation measures (e.g., Ebi et al. 2014). 
Yet many available scenarios to support Arctic strategy, 
planning, and policy rely primarily on qualitative and fairly 
generalized narratives (e.g., Middleton et al. 2021) or focus 
mainly on quantitatively modeling physical changes with 
limited intersections with sociocultural or economic data 
(e.g., Hjort et al. 2018). 

Due to a high degree of uncertainty in the region, 
researchers are advised to consider the various development 
trajectories from an interdisciplinary position when con-
structing Arctic scenarios (Zaikov et al. 2019). Furthermore, 
the Arctic is not a homogenous region (e.g., Young and Ein-
arsson 2004); thus, diferent parts of the Arctic may expe-
rience diferent changes and responses to climate change. 
Pythia can facilitate the overlay of multiple spatial datasets, 
each exploring the spatial distribution of features relevant 
to a trajectory using a solid statistical approach, particularly 
in cases like the ones presented here, where multiple fac-
tors could become strong determinants of the future of a 
region. The results of this approach provide a more acces-
sible means of distilling a bottom line for researchers, poli-
cymakers, Arctic residents, commercial entities, and other 
stakeholders. 
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In future research, we envision that Pythia can help 
baseline present-day characteristics and provide insights 
into future changes given specifc assumptions. For exam-
ple, Pythia can provide the basis for geographically depict-
ing future scenarios of human migration due to climate 
change, development of health crises, and stimulation of 
tourism by assuming a continuation of the patterns seen in 
the three case studies, respectively, described in this paper. 
Policymakers and stakeholders could then use the results 
of such analysis, as the fnal visualization would represent 
a possible “future” map and “look back over the years to 
see how they got to where they are today” (Gordon 2021, 
p. 237). 
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